Mining frequent patterns with differential privacy
نویسندگان
چکیده
منابع مشابه
Mining Frequent Patterns with Differential Privacy
The mining of frequent patterns is a fundamental component in many data mining tasks. A considerable amount of research on this problem has led to a wide series of efficient and scalable algorithms for mining frequent patterns. However, releasing these patterns is posing concerns on the privacy of the users participating in the data. Indeed the information from the patterns can be linked with a...
متن کاملPrivBasis: Frequent Itemset Mining with Differential Privacy
The discovery of frequent itemsets can serve valuable economic and research purposes. Releasing discovered frequent itemsets, however, presents privacy challenges. In this paper, we study the problem of how to perform frequent itemset mining on transaction databases while satisfying differential privacy. We propose an approach, called PrivBasis, which leverages a novel notion called basis sets....
متن کاملMining Frequent Patterns Through Microaggregation in Differential Privacy
Frequent pattern mining has been widely employed to analyze transaction datasets, but the question of how sensitive information contained in a dataset should be protected remains remains relatively unanswered. The differential privacy model provides a robust privacy guarantee, but the k-anonymity model provides better dataset utility. In this paper, a synergetic approach is proposed to simultan...
متن کاملMining Frequent Ordered Patterns
Mining frequent patterns has been studied popularly in data mining research. All of previous studies assume that items in a pattern are unordered. However, the order existing between items must be considered in some applications. In this paper, we first give the formal model of ordered patterns and discuss the problem of mining frequent ordered patterns. Base on our analyses, we present two eff...
متن کاملMining Frequent Patterns by Differential Refinement of Clustered Bitmaps
Existing algorithms for mining frequent patterns are facing challenges to handle databases (a) of increasingly large sizes, (b) consisting of variable-length, irregularly-spaced data, and (c) with mixed or even unknown properties. In this paper, we propose a novel self-adaptive algorithm D-CLUB that thoroughly addresses these issues by progressively clustering the database into condensed associ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the VLDB Endowment
سال: 2013
ISSN: 2150-8097
DOI: 10.14778/2536274.2536329